
UDC 541.124 

ASZMPTOTPC PROPERTIES OP ONECOMPONB+T MODEL IN THE THEORY OF 

SORPTICBl DYNAMICS 

PMM Vol. 43, Np. 6, 1979, pp. 1040-1045 

E. V. VENITSIANOV 

(Moscow) 

(Received June 29, 1978) 

Asymptotic properties of integro-differential equations defining a one-compon- 
ent one-dimensional model of multistage dynamics of sorption is considered 
in the limit case when one of the kinetic stages is a limiting one. 

2, T h e i n p u t s y s t e m, The processofextraction ofdissolved or suspended 
component from a fluid(gaseous) phase filtering through a sorbent layer is considered. In 
the one-dimensional approximation in the case of uniform motion of the fluid the 
equations of conservation of the component are of the form [l, 21 

V~C I do + E~C I dt + da I at = D,@c / a2 (1.1) 
R 

a = -& 
s 

a., (r; t, x) r2 dr (1.2) 

aa f at” = f3 (C - c*), a,* = f (c*), a (a,~) I at = (I.31 
Did2 (a,~) f a9 

where c (Z, t) is the concentration in the fluid phase per unit volume of the fluid 
phase; u (z, t) is the macroconcentration of the component in the sorbent per unit 
of filter volume; a, (r; t, x) is the local concentration in the sorbent consisting of 
spheres of radius R; c* and a* are the equilibrium concentrations at the phase in- 
terface; 5 is a coordinate in the direction of filtration flow (at entry to the sorbent 
Iayer 5 = 0 ) ; v is the filtration rate, t is the time, r is the varying radius in- 
side the sorbent spherical elements, E is the macroporosity of the sorbent layer, D, 

is the coefficient of lengthwise diffusion, Di is the coefficient of diffusion inside sor- 
bent grains, and p is the coefficient of mass transfer from the stream to the surface 
of sorbent elements. 

Equation (1.1) defines the co~ervation of the sorbate, (1.2) defines the relation 
of local concentration in the sorbent to the macr~on~entration, and Eqs. (1.3) 
represent the equations of external diffusion kinetics, of thermodynamic equilibrium 

(isotherms)(unlessotherwise stated, we assume below that f (c*) = rc*, where I’ 
is the Henry constant), and the equation of diffusion within, the grainsof sorbent, re- 

spectively. 
We assume the sorbent layer to be semi-infinite, and consider the following bound- 

ary value problem: 

c (0, t) = co, a (x, 0) = a, (r; 0, x) = 0 (1.4) 

The remaining conditions for various specific problems are defined in Sects. 2 and 

3, below. 
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The model (1.1) - (1.4) is a multistage one, since three kinetic stages are taken 
into account, viz. the external, internal, and the lengthwise diffusion; it is also 
heterophase, since two phases of substance are considered. Tn a certain sense it is one 
of the simplest, since the multicomponent and multiphase stages such as, for instance, 

dissociation, and the formation of complexes are not taken into account. 

To determine the characteristic dimensionless parameters of the problem we shall 
use the characteristic scales of time ‘G and length g of respective single-stage models. 
To external diffusion for Di = 00, Dl = 0 the characteristic time and length are, 

respectively, re = r / b and & = u 1 p ; for internal diffusion for p = 00, 

D1 = 0 we have, respectively, ri = R2 I Diy and Ei = vR’ i I?Di; and 
for the lengthwise ‘diffusion for P = Di = 00 we have, respectively, rr = Dl1‘ I 

u2, and & LY D, / U. System (1.1) - (1.3) in dimensionless variables (any pair 

of ‘G and E) contains the dimensionless quantities 

H = Ti I me = fiR2 I Dir, A = TZ/ ITS = Dip l ~2 (1.5) 

I = Ti I rr = R2v2 j I’DiDl 

The slowest kinetic stage of a multistage process will be called below the limiting 
stage. The rate of sorbtion depends on the consecutive effects of the external and 
internal mass transfer and is determined by the stage whose diffusion resitance is the 

higher. The effect of lengthwise diffusion is, on the other hand, the greater themore 

intense the diffusion stream. Hence the ratio of time scales, as defined by the dimen- 

sionless parameters in (1.5) determine the limiting stage. 
Below we consider the asymptotic properties of unsteady sorbtion processes when 

one of the stages is the limiting one. Under unsteady conditions the use of single- 

stage models as a whole is incorrect, since on certain stages of the process the effect 
of nonlimiting stages may be the determining one. In fact, the quantities H, A, 
and I define the ratio of streams of substance only when the respective phase concent- 
ration gradients are of the same order in dimensionless variables. For instance, under 

the boundary conditions (1.4) the gradients in the fluid and solid phases attain their 

maxima at the beginning of the process, hence the effects of external and length- 

wise diffusion can be considerable, in spite the magnitude of the dimensionless para- 

meters (1.5). 
Let us consider the process stages in which it is necessary to take into account the 

multistage structure properties and show the asymptotic boundaries of such stages. 

2. The external diffusion as the limiting stage (5, > ri, 7, ;,‘Q r;). At the 
beginning of a dynamic sorbtion process that satisfies conditions (1.4) it is necessary 
to take into account the external and the lengthwise diffusions, hence we set H = 0, 

A<i, and represent system (1.1) - (1.4) and the boundary conditions for a 

semi-infinite layer 5 > 0 in the form 

au I dX + EI’-%L I dT f dq I dT = Ad’u / 8X2 (2.1) 
dq/aT=u- q (X > 0, T > 0) 
u (0, T) = 1, q (X, 0) = 0, (au / L’X)x,, = 0 
u = c I CQ, q = a I rc,,, X = x I E,, T = t I ‘6, 
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Since at the beginning of sorbtion the concentration q is low, we consider, in- 
stead of system (2.1) the equation 

8u / 8X + el?lh~ / c?T + u = A@U I dX2 

with the same boundary conditions. Its solution is of the form [3] 

u (X, T) = Va (exp Y_ erfc Z_ + exp Y, erfc 2,) (2.2) 
Y*= X / 2A =t X [A-’ + (2A)-2]‘~z 
z* = e’l$“l+‘l~X / 2 & i=/l$%T’Ia [I + 1 / (4A)]‘h 

Analysis of solution (2.2) enables us to establish temporary boundaries of the length- 
wise diffusion effects. We shall call that stage the A -zone. 

By setting in system (2.1) A = 0 we obtain a solution which under conditions 
(1.4) has at instant T” = eX /I’ the discontinuity 

T < To, u = 0; T = T”, u = exp (- X) (2.3) 

The allowance for lengthwise diffusion for any X and A as small as desired leads 
to a continuous increase of concentration from zero. For T<eX2 I (4A.I’) we 
represent solution (2.2) in the form 

u=u,=erEc( ,$ZL)+O[l/~=q(---j$&i)] 

which within the second term is the solution of problem 

CiaUO / aT = Aa%,, / 8X2, uo(x, 0) = 0, u. (0, T)= 1 

Consequently, for fairly small times T the lengthwise diffusion predominatesnot 
only over the external diffusion mass transfer but, also, the convection one. Thus the 
“left-hand” boundary T,l* of the A -zone for any X # 0 is determined by the 

equality Tel* = 0. 
Let us determine the “right-hand” boundary of the A -zone. We shall consider 

the solution of problem (2.1) at the beginning of the steady mode. It follows from 
(2.2) that as T --t 00 we have u” = Y_, which for A < 1 is the same as the 
expression (2.3) for the single-stage external-diffusion model. We shall call the right- 
hand boundary of the A -zone the instant Tel** (X) at which solution (2.2) 

reaches with the specified accuracy 6 the value u’, i.e;. [u“ - u (X, Tel**)] / 
u0=6. For X > A the boundary of the A -zone is determined with an accur- 
acy within terms of order E I X2 by formula 

Tel** = T” + A.$ / (2I’) (2.4) 

where cp is determined by the equation 6 = erfc (q/2). 
The width of the A -zone thus depends on the sorbtion properties of the system 

and increases with increasing, X ; the lower the coefficient r, as for example, 
in the regeneration of sorbents, the more pronounced is the effect of the lengthwise 

diffusion. 
The use of solution (2.2) within the limits of the A -zone is admissible. Let US 

determine the time interval 0 < T < To within which the simplified equation 
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valid, i.e. the quantity 9 < SJ, where & is the admissible error of the determina- 
tion of 4. Solution of the problem of external diffusion kinetics implies that 

&=exp(-T1.,)r(expr)u(X,T)dr<exp(-X)[1--exp(-T,)] 
0 

from which we obtain the expression for the estimate I”,> - In (1 - &I exp X), 
The above estimate is too low, since within the limits of the A-zone u < u'. 

Hence solution (2.2) is valid within the limits of the A -zone under condition T < 
To. 

Let US now determine the zone of the internal diffusion kinetics infiuence in the 
last stages of sorbtion under the condition that the external diffusion is still the Emit- 
ing stage. We call that stage the i -zone. Since in the final stages the gradients in 
the solution are at their minimum values, we can set A = 0, H & 1. 

Let US consider system (1.1) - (1.3) supplemented by the condition of absence of 
sinks at the centers of grains lim,,O (r&z,) / dr = 0, when I) I = 0. Using 

the Laplace transform with respect to time, and analyzing the expansion in the neigh- 
borhood of t=00, we obtain 

pi (Xi, Ti) = 1 - Xi / Ti + ‘/zTi-% (Xi I 15 + Xi2 i 2) “i_ (2.5) 
0 (Ti-“) 

Uie (Xi, Tf) = 1 - Xi I Ti + ‘I’~T~-’ (Xi i 15 + Xi” i 2 t_ 
Xi i 22) + 0 (Ties) 

where uie is the soltttion when H # 0, Ui corresponds to H = 00 (single 
stage internal diffusion process), and Xi = X / Ei, Ti = t f of. 

The boundary of the zone of internal diffusion kinetics influence, i. e. of the i - 

zone, is determined by the condition 1 Uie - Ui 1 = hi,, where St, is the 

accuracy of boundary determination. For the left-hand boundary of the i -zone we 
obtain from expansion (2.5) the formula 

Tei* = V’X, / (2Hdi,) (2.6) 

The right-handboundary is defined by formula Tei** = 00 since solution 

(2.5) ~ymptotically approaches unity as Ti + co. It fo~ows’ from (2.6) that 

with decreasing H, i. e. with decreasing internal diffusion input, parameter T&G* 
increases in proportion to H’j* and the i -zone correspondingly narrows. Note also 

the i -zone decrease as X increases. 
The position of the i -zone for nonlinear isotherms is evaluated by formula(2.6) 

where H = flRa / (Dir) and y is the slope of the tangent to the isotherm at 

point u=q=l. 

3. Iruler diffusion as the limiting stage (ti > Ter Ti -> .tl). In this case 

the effect of nonlimiting stages is significant at the initial stages of sorbtion. Let US 

consider the solution beyond the limits of the A-zone, where it is possible to set 

A 0. Z 
As shown in [q, in the case of single-stage internal diffusion model the approxi- 

mate sotition for Ti < 1 is of the form 



One-component model in the theory of sorption dynamics 1129 

ui = exp (3X4 erfc [3Xi/(Z~~*“)l 

It follows from this that Ur (Xi, 0) = 0 for any X1 > 0. On the other 
hand, when the internal and external diffusions are taken into account, the solution 
for T 4 T” coincides with (2.3). Hence, for any as high as desired H, there 
exists a specific stage, which we shall call the e -zone, in which the progress of the 
operation is determined by the nonvoting external diffusion stage. 

For small times Ti the last of Eqs. (1.3) may be written in the form 

da, I dt = DiPaS I a$ (3.1) 

Y = 0, D,&zs / dy = fko-’ [V - a, (1 - 8) ! I‘], t = 0 
a, = 0 

where y is a coordinate along the normal to the sorbent surface, y= R-r,o 
is the specific surface of the sorbent charge, and v is the concentration of the fluid 

phase in which mass transfer takes place. For small times Tf we set V = c,, exp 
(- $x/v). 

The solution of problem (3.1) is of the form [S] 

a, = I’V (1 - 8)-f {erfc [y I (2 l/o)1 - exp (hy -I- h2Dit) X 

erfc [y / (2 JfD>) + h JfD>l} 
h=fl(1 - E) / (COrDi) 

from which follows the approximate expression for the surface con~entra~on 

a, (0, t) = 2VI’h JfD> I [r/Z (1 - &)l -t 0 (h’Dit) 

Passing to dimensionless variables X and T and using for u the external diffus- 
ion kinetics equation (1.3), and taking simultaneously into account the external and 
internal diffusion, we obtain a solution of the form 

T( T”, u,~=O; 2’S*‘, uei= 

exp (-- X) {I + 2/~~-‘~*X [If (T - T”)l”g) 
(3.2) 

The comparison of (3.2) and (2.3) shows that the magnitude of the concentration 
jump is determined by external diffusion, while the increase of concentration is due 
to internal diffusion, i.e. to the limiting stage. 

The right-hand boundary Tei** of the e -zone is determined by the condition 

t&i - l&)/U, = 6*i- In fhe same approximation as that in which solution (3.2) 

was obtained, the solution for uB of the form ue = exp (- X) [1 + X (T - 
To)1 directly follows from Eqs. (1.3) and (2.3) of kinetics, Hence the right-hand 

boundary of the e-zone is determined by the equality 

Tei** = T” _t 9ZS,i2 I (4HX”) 

The e-zone width is inversely proportional to H, i, e. it becomes narrower as 
the effect of the limiting stage increases. 

The considered here asymptotic properties of system (1.1) - ( 1.3) also indicate 
regions in which a particular (parabolic for the A- and i -zones, and hyperbolic 
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for the e-zone) type of the input system predominates, 
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